

Mountain Snow Hydrology

Professor John Pomeroy, FRSC Centre for Hydrology University of Saskatchewan Saskatoon and Canmore, Canada

Global Mountain Climate and Water Security Challenges

Degradation of water quality – agricultural runoff, industry, sewage Increasing competition for water resources – transboundary issues. Increasing risk from extreme events

Decoupling of streamflow from snowmelt and glacier melt timing Unsustainable use of water – food, energy, industry, drinking. Unprecedented environmental change.

Amplified climate change in high mountains – rapid glacier melt, declining snowpacks, more rainfall.

Mountain Water Services

Urgency and Significance of the Study of Mountain Snow Hydrology

- Melting cryosphere approaching and passing tipping points.
- Changing ecosystems treeline and shrub advance into alpine tundra, warmer streams, increasing snow/glacier algae
- Loss of snow and glacier damming effect is challenging current approaches to mountain water management
- High mountain hydrological cycle acceleration is advancing streamflow timing and increasing flood risk
- Sustainability of mountain and downstream communities for water, food and energy security requires better information and predictions.

Mountain Snow and Ice are Critical for Canada's Water Resources

Flood, Drought, Heatwaves and Fire

Canadian Rockies Hydrological Observatory and the Bow River Basin

Snow Fed

Cold Regions Hydrological Cycle

Integrated High Mountain Observations & Predictions

Snow Redistribution and Ablation Model www.snowcast.ca

Avalanche on steep rock wall

Snow interception

in conifer forest

Acoustic Sensing of Snow using CHIONE N. J. Kinar, J. W. Pomeroy, Centre for Hydrology, University of Saskatchewan, Saskatoon & Canmore

System for Acoustic Sensing of Snow (Chione)

CHIONE – Acoustic Measurement of Snowpacks

RMSD = Root Mean Squared Difference

MB = Mean Bias

LiDAR Derived Snow Depth Marmot Creek, April 2007

Hopkinson et al., 2009

How does snow blow off mountains?

Blowing Snow Mechanism

Winter Snow Redistribution and Sublimation

MacDonald, Pomeroy, Pietroniro, 2010

Alpine Blowing Snow Particle Tracking Study

Aksamit and Pomeroy, 2018

Slow Motion Blowing Snow Particles

Nik Aksamit

Forest Snow Interception & Sublimation

Pomeroy and Schmidt, 1993; Hedstrom & Pomeroy, 1997; Pomeroy et al., 2002; ; Essery et al., 2004; Gelfan et al., 2004; Pomeroy et al., 2008; Ellis et al., 2010

Snow Interception Losses Large

Visualisation of Snowmelt Runoff Intensity

Forest Snowmelt

Ellis and Pomeroy, 2007; Ellis et al., 2011

Forest Snow Regime on Slopes

200 ····· level - 30° north-sloping · -30° south-sloping 150 SWE [kg m⁻²] 100 50 Open slopes highly sensitive to irradiation Δ 10/1/07 12/1/07 3/1/08 5/1/08 6/1/08 7/1/08 11/1/07 1/1/082/1/084/1/08 8/1/08 difference, forests are not 100 level ----30° north-sloping 80 30° south-sloping SWE [kg m⁻²] 60 40 20 0 7/1/08 8/1/08 10/1/07 11/1/07 12/1/07 1/1/082/1/08 3/1/08 4/1/085/1/08 6/1/08

Ellis, Pomeroy, Link, 2013

How fast does water flow through snow?

New Model of Water Flow through Snowpacks

Precipitation during the 2013 Alberta Flood

courtesy: Alberta Environment & Parks

Alter-shielded Geonor Precipitation Gauge and Tipping Bucket Rain Gauge Marmot Creek

Mountain Hydrology in the Cold Regions Hydrological Model (CRHM)

Rain-on-Snow Processes

Sub-surface Moisture Storage Dynamics Control Flood Generation in Marmot Creek

Marmot Creek Research Basin, Canadian Rockies

CRHM Simulation of Streamflow

	NSE	RMSD	NRMSD	MB	
2006	0.63	0.117	0.60	-0.39	No calibration of parameters
2007	0.77	0.141	0.47	-0.09	
2008	0.63	0.134	0.50	0.11	
2009	0.61	0.093	0.47	-0.01	
2010	0.50	0.131	0.64	0.22	
2011	0.77	0.136	0.48	-0.02	
2012	0.75	0.164	0.52	-0.08	
All seasons	0.71	0.133	0.52	-0.03	

Pseudo-Global-Warming 2070-2099

Future Marmot Creek Snowpack - less snow, earlier melt

WRF at 4 km bias corrected Pseudo Global Warming

Fang and Pomeroy, 2020

GLOBAL WATER FUTURES SOLUTIONS TO WATER THREATS IN AN ERA OF GLOBAL CHANGE

Future Marmot Creek Streamflow – greater, earlier discharge

Virtual Basin CRHM for Alpine Hydrology Climate Sensitivity Assessment

00

000

0

0000

Lopez Moreno et al., 2020 ERL

Virtual Basin CRHM for Alpine Hydrology Climate Sensitivity Assessment

-hydrological sensitivity is lower than snowpack sensitivity to warming

Lopez Moreno et al., 2020 ERL

Canadian Hydrological Model (CHM)

- Variable resolution triangular mesh depending on topography, soils, vegetation
- Large decrease in computational and data demands over rectangular gridded models
- CHM includes algorithms for downscaling meteorological data from stations and weather models.
- CHM currently accounts for:
 - slope and aspect; terrain shading
 - gravitational redistribution
 - **blowing snow (**redistribution + sublimation)
 - snow/canopy interactions
 - energy balance snowmelt
- Globally applicable using existing datasets

Marsh et al. (2020)

Influence of snow redistribution in high mountains 7 km

CHM output is interpolated on regular 50-m grid

Vionnet et al., 2020

GEM-Canadian Hydrological Model - Snow Forecast in the Canadian Rockies

www.snowcast.ca

CHM over Western Canada

- Snowdrift resolving scales near ridges
- 1.3 million km²
- Snow accumulation during a 4-day storm in Jan. 2018
- Atmospheric forcing:
 - Canadian high resolution NWP 2.5 km

Simulation without snow redistribution

Marsh 2020

Concluding Thoughts

- Snow hydrology provides water for much of the world and is greatly threatened by climate warming
- Snow processes control hydrology
 - Blowing snow redistribution and sublimation
 - Canopy snow interception and sublimation
 - Snowmelt energetics control on slopes
 - Flow through snow and flow along and beneath hillslopes
- Coupled mass and energy fluxes and states mean that snow hydrology can be/should be predicted using physical principles
 - Regularity of snowmelt and large storage signals mean that it is amenable to physics based snow hydrology predictive approaches
- Climate warming causing
 - less snow redistribution,
 - less sublimation loss,
 - earlier snowmelt,
 - changes in melt rates,
 - decoupling of mountain streamflow hydrographs from the snow regime
 - Mountain hydrology is becoming more influenced by rainfall-runoff and is becoming less reliable.

www.usask.ca/hydrology

Thank you to colleagues who helped

- Xing Fang
- Tom Brown
- Phillip Harder
- Paul Whitfield
- Richard Essery
- Tim Link
- Chad Ellis
- Matt MacDonald
- Jimmy MacDonald
- Nacho Lopez Moreno
- Warren Helgason
- Howard Wheater
- Greg Galloway
- Robin Heavens

- Chris Marsh
- Nic Wayand
- Dhiraj Pradhananga
- Vincent Vionnet
- Brian Menounos
- Danny Marks
- Keith Musselman
- Nicolas Leroux
- Nicholas Kinar
- Nikolas Aksamit
- Chris Hopkinson
- May Guan
- Angus Duncan
- Eric Courtin